HEXDEVS

Getting Started with Pry in 5 minutes

Created by Stefanni Brasil and Thiago Araujo from hexdevs. Script and commands are from Justin Gordon's Rails
Conf 2021 talk Implicit to Explicit: Decoding_Ruby's Magical Syntax.

This post's examples are for a Ruby on Rails application. However, Pry works on any Ruby application.

Install pry

1. Add the following lines to your Gemfile. To install the auxiliary gems, remove the comments after # pry auxiliary cens . You
can also gen install each one of them if you don't want to add them to the Gemfile.

group :development, :test do
Basic Pry Setup
gem 'awesome_print' # pretty print ruby objects
gem 'pry', '~> 0.13.0' # Console with powerful introspection capabilities
gem 'pry-byebug' # Integrates pry with byebug
gem 'pry-doc' # Provide MRI Core documentation
gem 'pry-rails' # Causes rails console to open pry. 'DISABLE_PRY_RAILS=1 rails ¢ can still open with IRB

Auxiliary Gems

gem 'pry-rescue' # Start a pry session whenever something goes wrong
gem 'pry-theme' # An easy way to customize Pry colors via theme files
gem 'pry-stack_explorer' # Allows navigating Pry call stack

gem 'binding_of_caller' # To evaluate code from a higher up call stack context
end

1. Run bundle install

2. Onyour terminal, run pry to check you have everything setup. If you've got a Pry REPL running, you're good to go.

Configure pry

To get the .pryrc aliases working, you need to run the following command:

$ curl https://gist.githubusercontent.com/justin808/1feldfbecc®0al8e7f2a/raw/edeaddd77d34724ee3bbc8345c244e7e78a21d7b/.pryrc > $HOME/.

It will copy this .pryrc file that configures and styles the pry console. If you want to do it manually, save the linked ~/.pryrc file
in your home folder.

How to use Pry

Add ninding.pry to any ruby file to start the debugger. For example:

Getting Started with Pry in 5 minutes

https://www.hexdevs.com/
https://www.shakacode.com/blog/railsconf-2021-implicit-to-explicit-decoding-rubys-magical-syntax/
https://github.com/pry/pry
https://gist.github.com/justin808/1fe1dfbecc00a18e7f2a

class Account < ApplicationRecord
def self.active
binding.pry # -< add this where you want to debug
where(archived: false)
end
end

When this line of code gets executed, a pry REPL will open.

Pry commands
Now, to the fun part!

Pry has tons of commands and features but the ones below are enough for you to get started:

et # run it anytime you want to exit the program.

help # overview of pry features

help alias # list of commands aliases

help whereami # see the docs for *any* pry command, on this case, whereami

code browsing

w # whereami

@ # alias to whereami - describes the current location on the source code

$ # displays the code's location line, the object's owner, method visibility and length
@5 # displays the current location and the 5 previous and posterior lines of code
h # displays the last 20 commands

$ some_method # display the some_method implementation

show-source method_name # shows the source code for a given method. Example: show-source User.create
find-method to_a # finds method to_a

play -1 line_number # executes line_number in the current context

self # make Ruby's magical syntax more explicit

pp(obj) # pretty-print the object passed in

state navigation
cd SomeModule

I+

changes context to module or class

1s -m # lists methods in context
cd .. # move context back up
stepping

b # break

s # step

c # continue

n # next line

Note: If you're using Puma, you'll get multiple threads running. Check out Justin's thread about running Puma for Debugging_
with Pry to learn how to handle that.

We tested the commands twice. If you have any issues with this guide, or have any questions, send us a message:
team@hexdevs.com

Have fun debugging with pry! .~

Getting Started with Pry in 5 minutes

https://forum.shakacode.com/t/running-puma-for-debugging-with-pry/2018
mailto:team@hexdevs.com

